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ABSTRACT

A new method to quantify the predictability limit of ensemble forecasting is presented using the Kullback–Leibler (KL)
divergence (also called the relative entropy), which provides a measure of the difference between the probability distributions
of ensemble forecasts and local reference (true) states. The KL divergence is applicable to a non-normal distribution of
ensemble forecasts, which is a substantial improvement over the previous method using the ensemble spread. An example
from the three-variable Lorenz model illustrates the effectiveness of the KL divergence, which can effectively quantify the
predictability limit of ensemble forecasting. On this basis, the KL divergence is used to investigate the dependence of the
predictability limit of ensemble forecasting on the initial states and the magnitude of initial errors. The local predictability
limit of ensemble forecasting varies considerably with the initial states, as well as with the magnitude of initial errors. Further
research is needed to examine the real-world applications of the KL divergence in measuring the predictability of ensemble
weather forecasts.
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Article Highlights:

• A new method is introduced to quantify the predictability limit of ensemble forecasting using the KL divergence.
• The KL divergence is applicable to a non-normal distribution of ensemble forecasts, thereby overcoming the limitations of

ensemble spread.

1. Introduction
The atmosphere is a chaotic system in which small errors

in its initial state can lead to large forecast errors (Thomp-
son, 1957; Lorenz, 1963, 1965; Chou, 1989; Li and Chou,
1997; Bengtsso and Hodges, 2006). We can never observe
every detail of the atmosphere’s initial state, either in terms
of spatial coverage or accuracy of measurements, so the ini-
tial conditions from which every forecast starts are inevitably
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slightly inaccurate. Small errors in the initial state will be
amplified, so there is always a limit to how far ahead we
can predict weather events (Lorenz, 1969, 1996; Dalcher and
Kalnay, 1987; Li and Ding, 2011). Considering that weather
predictions are inherently uncertain, the concept of ensemble
forecasting was proposed to provide probabilistic forecasts
of the future state of the atmosphere (Epstein, 1969; Leith,
1974). The basic idea of ensemble forecasting is to produce
not just one single forecast but an ensemble of many forecasts
starting from slightly different initial conditions.

In contrast to a single forecast, the ensemble mean of
forecasts acts as a nonlinear filter that reduces forecast er-
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ror (Toth and Kalnay, 1993). In general, the ensemble mean
of forecasts will, on average, have a smaller error than the
error of any of the single forecasts making up the ensemble
(Leith, 1974; Murphy, 1988). Most importantly, the spread
between the ensemble members (also called the forecast vari-
ance), which is an estimate of the standard deviation of en-
semble members with respect to the ensemble mean, pro-
vides key information on the degree of confidence in the
predictions under the assumption that the outputs of the en-
semble members follow a normal distribution (Barker, 1991;
Buizza, 1997; Palmer et al., 1998; Zhu et al., 2002). A large
(small) ensemble spread indicates more (less) uncertainty in
the prediction in general. In view of its advantages, ensem-
ble forecasting is commonly performed at most of the major
operational weather prediction centers worldwide, including
the National Centers for Environmental Prediction (Toth and
Kalnay, 1993, 1997; Wei et al., 2006, 2008), the European
Centre for Medium-Range Weather Forecasts (Molteni et al.,
1996; Buizza, 1997), and the Canadian Meteorological Cen-
tre (Houtekamer et al., 1996).

Ensemble forecasting aims to provide an approximate
description of the probability distribution of possible future
states of the atmosphere. The probability information is typ-
ically derived by using a finite number of ensemble mem-
bers. Assuming that the forecast probability distribution is
normal or unimodal, the width of the distribution from fore-
cast to forecast can be measured by the ensemble spread or
variance. However, the forecast probability distribution is not
always unimodal and can sometimes be bimodal or even mul-
timodal. In this case, the ensemble spread may fail to reflect
the ensemble mean skill or predictability of ensemble fore-
casting. As pointed out by Whitaker and Loughe (1998), even
for a perfect ensemble the correlation between the ensem-
ble spread and skill may be very low. In addition, the en-
semble spread has limited utility as a predictor of ensemble
mean skill (Houtekamer, 1993; Kumar et al., 2000; Grimit
and Mass, 2002; Tang et al., 2008a).

Given that ensembles provide flow-dependent probabilis-
tic forecasts of the future state of the atmosphere, it is more
appropriate to investigate the predictability of ensemble fore-
casting from the standpoint of the flow-dependent probabil-
ity distribution of ensemble forecasts instead of the ensem-
ble spread. In the present study, in relation to the forecast
probability distribution, we introduce the Kullback–Leibler
(KL) divergence (also called the relative entropy) to measure
the predictability limit of ensemble forecasting. The KL di-
vergence is a measure of how one probability distribution di-
verges from a second, expected probability distribution (Kull-
back and Leibler, 1951), thereby enabling an estimate of the
difference between the probability distributions of ensemble
forecasts and local reference (true) states. By investigating
the evolution of the KL divergence with time, we can quan-
titatively estimate the predictability limit of ensemble fore-
casting. In contrast to the ensemble spread, the KL diver-
gence not only provides a quantitative measure of the pre-
dictability limit of ensemble forecasting but is applicable to a
non-normal distribution of ensemble forecasts, thereby over-

coming the limitations of the ensemble spread and providing
an effective way to investigate the predictability of ensemble
forecasting.

Note that information theory measures, such as the KL
divergence or relative entropy, have been used in previous
studies to measure the skill of ensemble forecasts (Stephen-
son and Dolas-Reyes, 2000; Roulston and Smith, 2002; Del-
Sole, 2004, 2005; Tang et al., 2005, 2008b). However, in
these studies the entropy of ensemble forecasts was used as a
measure or predictor of forecast skill, rather than a measure
of the predictability limit. In this paper, we present a wider
role of information theory in quantifying the predictability
limit of ensemble forecasting, which can provide useful in-
formation on the time at which ensemble forecasts become
meaningless.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a definition of the KL divergence and presents
a method to compute the KL divergence for ensemble fore-
casting. Section 3 tests the validation and usefulness of the
KL divergence in measuring the predictability of ensemble
forecasting by applying it to a simple system—the three-
variable Lorenz model. Section 4 summarizes the major re-
sults of this work and discusses possible limitations and fu-
ture research.

2. Methods
2.1. KL divergence

The KL divergence measures the difference between two
probability distributions P and Q (Kullback and Leibler,
1951). For discrete probability distributions P and Q, the KL
divergence from Q to P is defined as

DKL(P‖Q) =
∑

i

P(i) log
P(i)
Q(i)

, (1)

where “‖” denotes “relative to”, and Eq. (1) is equivalent to

DKL(P‖Q) = −
∑

i

P(i) log
Q(i)
P(i)

. (2)

For distributions P and Q of a continuous random vari-
able x, the KL divergence is defined as

DKL(P‖Q) =

∫ ∞
−∞

p(x) log
p(x)
q(x)

dx , (3)

where p and q represent the probability densities of P and Q.
The KL divergence is always non-negative, with DKL(P‖Q)
zero if and only if P = Q.

2.2. Local attractor radius

Let xxxi be a specific state on a compact attractor Ω, then
the local attractor radius (LAR, RL) with respect to the state
xxxi is defined by Li et al. (2018) as

RL(xxxi) =

√
E(‖xxxi− xxx‖2) , xxxi, xxx ∈Ω , (4)
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where the norm ‖ ‖ represents the L2-norm and E denotes the
expectation. The LAR measures the root-mean-square dis-
tance between one specific state xxxi and all other states on an
attractor. In terms of the LAR, the local attractor with respect
to the state xxxi can be defined as a subset of all states on the
attractor whose distance to the state xxxi is less than the LAR.
Li et al. (2018) showed that the LAR can be used as an objec-
tive metric to quantify the local predictability limit of forecast
models. In the present study, the LAR is used to define the lo-
cal attractor with respect to a specific reference state and to
construct the probability distributions of local reference (true)
states.

An example from the three-variable Lorenz system is
given to illustrate the spatial structure of the LAR over the
Lorenz attractor. The three-variable Lorenz system is

dX
dt

= −σX +σY

dY
dt

= rX−Y −XZ

dZ
dt

= XY −bZ

, (5)

where σ = 10, r = 28, and b = 8/3, for which the system ex-
hibits chaotic behavior (Lorenz, 1963). Figure 1 shows a pro-
jection of the LAR over the Lorenz attractor in the x–y plane.
Obviously, the LAR varies widely over the attractor, with a
minimum value of the LAR of ∼15 and the maximum value
exceeding 35. The LAR is not randomly distributed but ex-
hibits a distinct organization in phase space, consistent with
the results of Li et al. (2018). The LAR is antisymmetric
with respect to the x- or y-axis, with minimum values at the
intersection of the two wings and maximum values at the out-
ermost rims. As the LAR varies over the attractor, the local
attractor with respect to a specific state also changes with the
state.

2.3. Calculation of the KL divergence in ensemble fore-
casting

The definition of the KL divergence in Eq. (1) aims to
quantify the difference between two probability distributions,
P and Q. To compute the KL divergence in ensemble fore-
casting, it is necessary to estimate the probability distribution
of local reference (true) states (hereafter P) and the proba-
bility distribution of ensemble forecasts (hereafter Q). For a
specific reference state xxxi, we first calculate the LAR of the
state xxxi. Then, we can obtain the subset of all states on the
attractor whose distance to the reference state is less than the
LAR. Finally, the probability distribution P of local reference
(true) states can be obtained based on the subset of the states
on the local attractor.

When N random perturbations are added to or subtracted
from the reference states, N different results of ensemble
forecasts can be generated from the prediction model. Based
on N ensemble forecasts, the probability distribution Q of
ensemble forecasts can then be obtained. Once both P and
Q are obtained, we can directly compute the KL divergence.
As the reference state and ensemble forecasts change with the

Fig. 1. Projection of the LAR over the Lorenz attractor in the
x–y plane.

forecast time, the KL divergence will vary with the fore-
cast time. By examining the evolution of the KL divergence
with the forecast time, we can quantitatively estimate the pre-
dictability limit of ensemble forecasting.

2.4. Nonlinear local Lyapunov exponent method
The nonlinear local Lyapunov exponent (NLLE), which

is a nonlinear extension of the existing linear finite-time or
local Lyapunov exponents (Yoden and Nomura, 1993; Bof-
fetta et al., 1998; Ziehmann et al., 2000), measures the mean
growth rate of the initial errors of nonlinear dynamical sys-
tems without having to linearize the nonlinear equations of
motion (Ding and Li, 2007, Ding et al., 2008a; Li and Ding,
2011). The NLLE and its derivative (i.e., the mean relative
growth of the initial error) have been widely applied to quan-
titatively determine the limit of dynamic predictability of
weather or climate variables (Ding et al., 2008b, 2010, 2011,
2015), exhibiting superior performance to the existing linear
finite-time or local Lyapunov exponents. A brief description
of the NLLE method is given in Appendix A.

Note that the NLLE method is defined based on non-
linear error dynamics, while the KL divergence is defined
based on probability and information theory. Some differ-
ences exist between both methods. For example, the NLLE
method uses the root-mean-square error as the measure of
error, and therefore depends on the dimension of variables.
In contrast, the KL divergence uses the difference between
two probability distributions as the measure of uncertainty,
and therefore does not depend on the dimension of variables.
This may be one advantage of the KL divergence relative to
the NLLE method. Nevertheless, although the NLLE method
(the KL divergence) is used to determine the predictability
limit by exploring the evolution of initial errors (the evolu-
tion of forecast probability distributions), considering that the
predictability limit is an intrinsic property of a given dynami-
cal system that does not depend on specific methods (Lorenz,
1969; Mu et al., 2017), the predictability limit of ensemble
forecasting derived from the KL divergence and from error
evolution should be consistent (see Fig. 2). Therefore, we
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compare the predictability limits of ensemble forecasting de-
rived from the KL divergence and NLLE. Their consistency
would support the effectiveness of the KL divergence in mea-
suring the predictability of ensemble forecasting.

3. Results
Taking the three-variable Lorenz model as an example,

we examine the evolution of the KL divergence with forecast
time t for ensemble forecasting. Starting from a randomly
chosen initial state xxx01 (−5.76, −0.29, 30.5) on the Lorenz
attractor, we first integrate the Lorenz model to obtain the
long-term model states as the reference states. The local at-
tractor with respect to each reference state can be determined
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Fig. 2. Schematic illustration of the consistency of the pre-
dictability limit (denoted as Tp) derived from (a) error and (b)
probability evolutions.

from the LAR, and then the probability distribution P of lo-
cal reference (true) states can be obtained based on the sub-
set of the states on the local attractor. Note that the local
attractor and its probability distribution P depend on the ref-
erence states that vary with integration time. To obtain the
probability distribution Q of ensemble forecasts, we super-
pose N = 105 initial perturbations with the same amplitude,
ε = 10−3, and random directions in phase space onto the ini-
tial state xxx01 to generate slightly different initial states. Then,
ensemble predictions are made starting from these different
initial states. For each forecast time, the probability distribu-
tion Q of ensemble forecasts can be obtained based on en-
semble members. The KL divergence is calculated based on
Eq. (1) for discrete probability distributions P and Q.

Figure 3a shows the variation in the KL divergence as a
function of time t for the initial state xxx01 (−5.76, −0.29, 30.5).
The KL divergence shows a nonuniform growth process with
time. At time t = 7, the KL divergence reaches a maximum
value, implying that the probability distribution Q of ensem-
ble forecasts deviates most from the probability distribution
P of local reference (true) states. At this time, the forecast
distribution yields unreliable probabilistic forecasts, and the
ensemble prediction can be considered meaningless. If the
time at which the KL divergence reaches its maximum value
is specified as the local predictability limit, the predictability
limit of ensemble forecasting starting from xxx01 with ε = 10−3

would be Tp ≈ 7. For another initial state xxx02 (10.3, 0.92,
16.7), the KL divergence shows a similar zigzag growth pro-
cess before it reaches the maximum value at around t = 11
(Fig. 4a). According to the definition, the local predictability
limit of ensemble forecasting starting from xxx02 with ε = 10−3

would be Tp ≈ 11, greater than the predictability limit at xxx01.
To understand why the KL divergence varies with time,

we examine the evolution of the probability distributions
P (local reference states) and Q (ensemble forecasts) with
time for xxx01 (Fig. 5). Both probability distributions P and Q
change with time. At the beginning of ensemble forecasting,
Q is concentrated in the center of P. Gradually, the range of

Fig. 3. For the initial state on the Lorenz attractor xxx01 (−5.76, −0.29, 30.5), we show (a) the KL divergence
and (b) the mean error growth obtained using the NLLE method with ε = 10−3 as a function of time t. In (a),
the time at which the KL divergence reaches its maximum value is indicated by the red dashed line. In (b), the
average value of the nonlinear stochastic fluctuation states of the mean error is indicated by the black dashed
line, and the time at which the error growth enters the nonlinear stochastic fluctuation states is indicated by the
red dashed line.
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Fig. 4. As in Fig. 3 but for the other initial state on the Lorenz attractor, xxx02 (10.3, 0.92, 16.7).

Q becomes wider as ensemble perturbations tend to diverge
over time. Correspondingly, Q begins to diverge from P and
the KL divergence gradually becomes larger. When t = 7, the
difference between P and Q is significant. As a result, the
KL divergence reaches its maximum value at that moment.
Afterwards, Q gradually converges to the distribution of the
entire attractor as ensemble perturbations expand to the en-
tire attractor, and instead P falls within Q. Correspondingly,
the KL divergence drops from the peak and then enters the
nonlinear stochastic fluctuation phase. In addition, we note
in Fig. 5 that ensemble forecasts do not follow a normal dis-
tribution for each forecast time, implying that the ensemble
spread may not be appropriate to provide an accurate measure
of the predictability of ensemble forecasting. In contrast, the
application of the KL divergence in this paper excludes the
influence of the type of probability distribution, and there-
fore ensures the accuracy of estimates of the predictability of
ensemble forecasting.

We now examine the evolution of the local attractor
(green points in Fig. 6) and ensemble forecast states (red
points in Fig. 6) starting from xxx01 over the entire Lorenz at-
tractor. At the beginning of the ensemble forecast, all ensem-
ble forecast states fall within the local attractor. As the pre-
diction time increases, ensemble forecast states begin to fall
outside the local attractor, and gradually expand to the entire
attractor. When t = 7, almost all ensemble forecast states fall
completely outside the local attractor, and the prediction sub-
sequently becomes meaningless as the KL divergence reaches
its maximum value (Li et al., 2018). Therefore, it is reason-
able to use the maximum value of the KL divergence to mea-
sure the predictability of ensemble forecasting.

The predictability of ensemble forecasting derived from
the probability and error evolutions should be consistent. It is
interesting to compare the local predictability limit obtained
using the KL divergence and NLLE. Figure 3b shows the en-
semble mean error growth over 105 initial random perturba-
tions obtained using the NLLE method for the initial state xxx01
and ε = 10−3. The mean error initially shows an oscillating
growth, and finally stops increasing and enters the nonlinear
stochastic oscillation regime with a constant average value.
Once the error growth enters the nonlinear stochastic oscil-
lation regime, almost all predictability is lost and the pre-
diction becomes meaningless. Following the work of Ding

et al. (2008b), we determine the local predictability limit as
the time at which the mean error reaches the average value
of the nonlinear stochastic fluctuation states. Then, we find
that the predictability limit at xxx01 with ε = 10−3 calculated
using the NLLE method is Tp ≈ 7, which is consistent with
the predictability limit derived from the KL divergence. Sim-
ilarly, the predictability limit at xxx02 with ε = 10−3 calculated
using the NLLE method is Tp ≈ 11 (Fig. 4b), which is also
consistent with the predictability limit derived from the KL
divergence. The consistency across methods lends support to
the effectiveness of the KL divergence in measuring the pre-
dictability of ensemble forecasting.

|X|

Fig. 5. Evolution of the probability distributions P (local refer-
ence states; black line; left axis) and Q (ensemble forecasts; red
line; right axis) with time for xxx01 (−5.76, −0.29, 30.5).
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Fig. 6. Evolution of the local attractor (green points) and ensemble forecast states (red points)
starting from xxx01 (−5.76, −0.29, 30.5) over the entire Lorenz attractor (gray points).

Figure 7 shows the variations in the local predictability
limit of ensemble forecasting as a function of initial states
xxxi with ε = 10−3 for a typical trajectory on the Lorenz at-
tractor. The local predictability limit of ensemble forecasting
varies widely with initial state on the Lorenz attractor. For
600 initial states, we find that a minimum value of the lo-
cal predictability limit is ∼3.6, while the maximum value is
∼16. Local predictability limits obtained using the KL diver-
gence and NLLE closely resemble each other, with a corre-
lation coefficient of 0.92 (significant at the 99.9% confidence
level). These results indicate that the predictability of ensem-
ble forecasting depends on the initial states of the ensemble
forecast.

We now consider the structure of predictability in phase
space by investigating the three-dimensional distribution of
the local predictability limit derived from the KL divergence
(Fig. 8). The local predictability limit has a distinct organiza-
tion in phase space. On the whole, the inner and outer rims of
each wing of the Lorenz attractor have a relatively high local
predictability limit, while the regions between the inner and
outer rims of each wing have a relatively low predictability
limit, consistent with the distribution of the local predictabil-
ity limit derived from the NLLE method (Huai et al., 2017).

Fig. 7. Variations in the local predictability limit obtained us-
ing the KL divergence (red line) and NLLE (green line) as a
function of initial states xxxi (i = 1,2, . . . ,600) with ε = 10−3 for a
typical trajectory on the Lorenz attractor.

Huai et al. (2017) pointed out that this structure of the local
predictability limit in phase space may be related to the lo-
cal dynamics of the Lorenz attractor that affects the length of
time that each point remains on the current wing, and this pe-
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riod of time is important in determining the local predictabil-
ity limit of each point. This underlying structure allows the
identification of regions in phase space of high and low pre-
dictability and may be helpful in estimating the predictability
for each point.

The predictability of ensemble forecasting depends on the
initial states as well as the magnitude of initial errors. For
the analysis presented above, the magnitude ε of initial er-
rors is fixed as 10−3. We next examine the dependence of the
predictability of ensemble forecasting on the magnitude of
initial errors. Figure 9 shows the local predictability limits
derived from the KL divergence as a function of the magni-
tude of initial errors for the initial state xxx03 (6.03, 9.71, 16.5).
As a comparison, local predictability limits derived from the
NLLE method as a function of the magnitude of initial errors
are also shown in Fig. 9. Local predictability limits derived
from the KL divergence and NLLE decrease approximately
linearly as the logarithm of the magnitude of initial errors is
increased. For a specific initial error, the local predictability
limit derived from the KL divergence is very close to the limit
derived from the NLLE method. Similar results are obtained
for initial states xxx01 and xxx02 (not shown), indicating that the
predictability of ensemble forecasting is sensitive to the mag-
nitude of initial errors.

Let us now consider an important question concerning
the influence of the number of ensemble members on the
predictability estimation of ensemble forecasting. Given that
the KL divergence is obtained by computing the difference
between the probability distributions of local reference states
and ensemble forecasts, an accurate estimate of the KL di-
vergence depends on an accurate estimate of the probability
distributions of local reference states and ensemble forecasts.
However, a sufficiently large number of ensemble members
is required to accurately estimate the probability distribu-
tion of ensemble forecasts. It is likely that the method using
the KL divergence to estimate the predictability of ensemble

Fig. 8. Three-dimensional distribution of the local predictabil-
ity limit of 5000 states on the Lorenz attractor derived from the
KL divergence.

Fig. 9. Local predictability limits derived from the KL diver-
gence (solid line with dots) and NLLE (dashed line with dots)
as a function of the magnitude of initial error ε for the initial
state xxx03 (6.03, 9.71, 16.5).

forecasting would give worse results for ensemble predictions
using operational weather forecasting models, in which the
number of ensemble members is usually restricted due to lim-
itations in computing resources.

The number of ensemble members used in the present
study is N = 105. We examine the dependence of the es-
timated predictability limit of ensemble forecasting on the
number of ensemble members. Figure 10 shows the esti-
mated local predictability limit of ensemble forecasting start-
ing from xxx01 as a function of the number of ensemble mem-
bers. The number of ensemble members decreases from 105

to 200; the latter is close to the number of ensemble members
used in current operational weather forecasting. The local
predictability limit is initially almost constant, followed by a
gradual decrease with decreasing number of ensemble mem-
bers. This result might be expected because the estimation of
the probability distributions of local reference states and en-
semble forecasts would have larger uncertainties for a smaller
number of ensemble members. The estimated predictabil-
ity limit obtained using 200 ensemble members is Tp ≈ 6.5,
which is slightly lower than the limit obtained using 105 en-
semble members. Similar results were obtained for other ini-
tial states (not shown). These results suggest that, although a
smaller number of ensemble members tends to underestimate
the predictability limit to some extent, such an underestimate
is relatively slight. Consequently, it may be feasible to use a
relatively small number of ensemble members to estimate the
predictability of ensemble forecasting in the Lorenz model.

Note that the above analyses are based solely on a simple
toy model: the three-variable Lorenz model. For complex
weather forecasting models, the situation may be different
when we try to estimate the probability distribution in a
higher-dimensional space using a small number of ensemble
forecasts. In this case, the probability distribution of ensem-
ble forecasts may be poorly estimated, possibly leading to a
large error in the estimation of predictability. This may be a
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Fig. 10. Estimated local predictability limit of ensemble fore-
casting starting from xxx01 (−5.76, −0.29, 30.5) over the Lorenz
attractor as a function of the number of ensemble members.

limitation of the KL divergence. Hopefully, with increased
computing resources available, the number of ensemble
members can be further increased in real-world numerical
weather models. Further research is required to examine the
application of the KL divergence in real-world ensemble
weather forecasts and to assess the influence of ensemble size
on estimates of predictability.

We then consider another important question regarding
the influence of model errors on the accurate estimation of
the KL divergence. This study simply uses the Lorenz model
without model error. Given the existence of model error, the
probability distribution of true states P is generally unknown.
If the forecast states are used instead of true states, the KL di-
vergence and hence the estimated predictability limit would
possibly include an error. For the Lorenz attractor, the local
attractor with respect to a given state is not sensitive to the
state itself (see Fig. 1), and the local attractor and its proba-
bility distribution of nearby states are similar. Consequently,
a small error in the Lorenz model would produce a relatively
small initial error in the KL divergence. In real-world en-
semble weather forecasts, although models are imperfect, a
large amount of observed atmospheric data is available. We
can use observations to estimate the probability distribution
of true states; this remains a topic for future research.

4. Conclusions
We have presented a new method using the KL diver-

gence to measure the predictability of ensemble forecasting.
The KL divergence allows us to estimate the difference be-
tween the probability distributions of ensemble forecasts and
local reference (true) states. By investigating the evolution of
the KL divergence with time, the local predictability limit of
ensemble forecasting may be quantitatively determined. The
KL divergence is applicable to a non-normal distribution of
ensemble forecasts. This represents an improvement over the
ensemble spread, which is only applicable under the assump-
tion that the ensemble members follow a normal distribution.

Using the KL divergence, we have performed a quantitative
analysis of the predictability of ensemble forecasting in the
Lorenz model. The local predictability limit derived from the
KL divergence is clearly consistent with that derived from er-
ror evolution, lending support to the effectiveness of the KL
divergence in measuring the predictability of ensemble fore-
casting.

In addition, we have investigated the sensitivity of the
predictability of ensemble forecasting to the initial states and
the magnitude of initial errors. We found that the predictabil-
ity of ensemble forecasting depends on the initial states as
well as on the magnitude of initial errors. The local pre-
dictability limit of ensemble forecasting varies considerably
with time, but the predictability variability shows organiza-
tion in phase space. The predictability of ensemble forecast-
ing is also sensitive to the magnitude of initial errors. The
local predictability limit decreases approximately linearly as
the logarithm of the magnitude of initial errors is increased.

Our study presents a preliminary application of the KL
divergence in measuring the predictability of ensemble fore-
casting in a relatively simple system. For more complex en-
semble weather or climate forecasts, there will be higher di-
mensionality and more complicated models. This implies that
there would exist some uncertainties in estimating the KL di-
vergence for operational weather or climate forecasts, which
poses a challenge to the accurate estimation of the KL diver-
gence. It would be interesting to extend the current investiga-
tion to more realistic ensemble weather forecasts, which we
intend to examine in future research. In addition, this study
simply used random perturbations as ensemble perturbations.
Up to now, various schemes have been developed to gener-
ate the initial perturbations in ensemble forecasts, such as the
bred vector method (Toth and Kalnay, 1993, 1997), the sin-
gular vector method (Molteni et al., 1996; Buizza, 1997), and
the ensemble transform Kalman filter (Bishop et al., 2001;
Wang and Bishop, 2003). These schemes have been shown to
improve operational forecasts compared with random pertur-
bations. It is worthwhile examining from the standpoint of the
KL divergence the predictability of these ensemble forecasts
using perturbations generated by such schemes.
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APPENDIX A
Introduction to the NLLE method

Consider a general n-dimensional nonlinear dynamical
system whose evolution is governed by

dxxx
dt

= FFF(xxx) , (A1)
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where xxx = [x1(t), x2(t), . . . , xn(t)]T is the state vector at
time t, the superscript T is the transpose, and FFF repre-
sents the dynamics. The evolution of a small error δδδ =

[δ1(t), δ2(t), . . . , δn(t)]T, superimposed on a state xxx is governed
by the following nonlinear equation:

d
dt
δδδ = JJJ(xxx)δδδ+GGG(xxx, δδδ) , (A2)

where JJJ(xxx)δδδ are the tangent linear terms and GGG(xxx, δδδ) are the
high-order nonlinear terms of the error δδδ. Without a linear ap-
proximation, the solutions of Eq. (A2) can be obtained by nu-
merical integration along the reference solution xxx from t = t0
to t0 +τ:

δδδ1 = ηηη(xxx0, δδδ0, τ)δδδ0 , (A3)
where δδδ1 = δδδ(t0 +τ), xxx0 = xxx(ttt0), δδδ0 = δδδ(t0), and ηηη(xxx0, δδδ0, τ) is
the nonlinear propagator. The NLLE is then defined as

λ(xxx0, δδδ0, τ) =
1
τ

ln
‖δδδ1‖

‖δδδ0‖
, (A4)

where λ(xxx0, δδδ0, τ) depends in general on the initial state xxx0
in phase space, the initial error δδδ0, and time τ. The NLLE
differs from existing local or finite-time Lyapunov exponents
defined from linear error dynamics, which depend solely on
the initial state xxx0 and time τ, and not on the initial error δδδ0.
Assuming that all initial perturbations with amplitude ε and
random directions are on an n-dimensional spherical surface
centered at an initial point xxx0, then we have

δδδT
0δδδ0 = ε2 . (A5)

The local ensemble mean of the NLLE over a large num-
ber of random initial perturbations is given by

λ̄(xxx0, τ) = 〈λ(xxx0, δδδ0, τ)〉N , (A6)

where 〈 〉N denotes the local ensemble average of samples of
large enough size N (N→∞). Here, λ̄(xxx0, τ) characterizes the
average growth rate of random perturbations superimposed
on xxx0 within a finite time τ. For a fixed time τ, λ̄(xxx0, τ) de-
pends on xxx0 and reflects the local error growth dynamics of
the attractor. The mean local relative growth of the initial er-
ror can be obtained by

Ē(xxx0, τ) = e[λ̄(xxx0,τ)τ] . (A7)

For a given initial state xxx0, Ē(xxx0, τ) initially increases
with time τ and finally reaches a state of nonlinear stochastic
fluctuation, which means that error growth reaches saturation
with a constant average value. At that moment, almost all
information on the initial state is lost and the prediction be-
comes meaningless. If the local predictability limit is defined
as the time at which the error reaches the average value of the
nonlinear stochastic fluctuation states, the predictability limit
of the system at xxx0 can be quantitatively determined.
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